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Abstract

Since 2021, a new surge in discrete aurora detections at Mars has been observed by the Emirates Mars Ultraviolet
Spectrometer (EMUS) onboard the Emirates Mars Mission (EMM) Hope Orbiter as EMUS started to regularly obtain
synoptic auroral images with a high sensitivity. Here we report on a fortuitous conjunction between EMM and Mars
Express (MEX) using far ultraviolet (FUV) imaging of discrete aurora by EMM EMUS, in situ measurements of suprath-
ermal electrons by the MEX Analyzer of Space Plasma and Energetic Atoms Electron Spectrometer (ELS), and topside
radar sounding of the nightside ionosphere by the MEX Mars Advanced Radar for Subsurface and lonosphere Sound-
ing (MARSIS). In this event, EMM EMUS imaged a clear discrete aurora signature around moderately strong crustal
magnetic fields on the nightside near the dusk terminator, 11 min before which MEX MARSIS measured a promi-
nent local enhancement of the peak electron density in the nightside ionosphere and MEX ELS observed an in situ
enhancement of suprathermal electrons at the corresponding location. A remarkable geographic agreement is found
between the enhancements of the aurora, ionosphere, and suprathermal electrons, suggesting that the enhanced
ionization and auroral emission are caused concurrently by precipitating suprathermal electrons. Subsequent images
indicate that the discrete aurora slightly changed its shape in 15 min and mostly disappeared in a few hours. The
MEX MARSIS measurements of the auroral ionosphere display overlapping ionospheric and surface echoes indicative
of horizontal gradients of the peak electron density. Analysis of the overlapping echoes implies that the auroral iono-
sphere and electron precipitation could be highly structured with horizontal spatial scales on the order of several tens
of km. MEX MARSIS also observed a non-auroral ionospheric enhancement with a wider spatial extent than the local
auroral enhancement, suggesting alternative sources of the enhanced nightside ionosphere such as plasma trans-
port. The comparison between the ionospheric structures measured by MEX MARSIS, suprathermal electron flux
measured by MEX ELS, and discrete auroral emission imaged by EMM EMUS underscores the complexity of the auro-
ral and non-auroral nightside ionospheres. This motivates further investigations of their sources, transport, and con-
nections to the magnetotail dynamics of Mars.
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Introduction

Since the discovery of aurora at Mars (Bertaux et al.
2005), observations and modeling of the Martian aurora
have continued to shed light on the interplay between
the upper atmosphere and the space environment of
Mars. Among the different types of the Martian aurora
(Schneider et al. 2015, 2018; Deighan et al. 2018; Ritter
et al. 2018; Chaffin et al. 2022), discrete aurora at Mars
represents spatially and temporally confined auroral
emission conventionally observed in the crustal mag-
netic fields of Mars (Acufia et al. 1999) and is typically
interpreted as driven by suprathermal electron pre-
cipitation (Leblanc et al. 2006, 2008; Brain and Halekas
2013; Gérard et al. 2015; Soret et al. 2016, 2021; Sch-
neider et al. 2021). The occurrence of discrete aurora
in the strong crustal field region (60°S-30°S, 150°E
—210°E) shows clear dependence on the local time and
the polarity of the interplanetary magnetic field (IMF)
B, component (Schneider et al. 2021), while the auro-
ral occurrence outside the strong crustal field region
depends strongly on the solar wind dynamic pres-
sure (Girazian et al. 2022). These statistical trends are
favorably compared with in situ observations of auro-
ral electrons with energies of 50-2000 eV (Brain et al.
2006; Xu et al. 2020, 2022a). The local-time and IMF-
B, dependences of the auroral occurrence in the strong
crustal field region can be explained in terms of mag-
netic reconnection between the draped IMF and crus-
tal magnetic fields (Johnston et al. 2023; Bowers et al.
2023a). Most recently, high-sensitivity and wide-cover-
age observations by the Emirates Mars Mission (EMM)
Emirates Mars Ultraviolet Spectrometer (EMUS) have
started unraveling new aspects of the Martian discrete

aurora, including their prevalence, instantaneous mor-
phology, temporal evolution, and additional catego-
ries including the non-crustal field patchy aurora and
“sinuous” aurora (Lillis et al. 2022). These observations
suggest a close connection between the discrete aurora
and magnetotail dynamics at Mars, the latter of which
(a) controls the magnetic field lines guiding suprath-
ermal electrons to the atmosphere and (b) potentially
drives the acceleration processes of auroral electrons.
The dynamically changing shapes and patterns of the
discrete aurora of Mars are likely driven by a variety
of dynamic processes that are known to operate in the
Martian magnetotail (e.g., Dubinin and Fraenz 2015;
Halekas et al. 2021). To name a few, in situ particle and
field measurements have revealed the presence of mag-
netic reconnection (Eastwood et al. 2008, 2012; Hale-
kas et al. 2009; Harada et al. 2015, 2017, 2020; Hara
et al. 2017; Wang et al. 2023), energy-dispersed ions
and electrons (Halekas et al. 2015; Harada et al. 2016a;
Zhang et al. 2023a), tail current sheet flapping (DiBrac-
cio et al. 2015, 2017; Zhang et al. 2023b), and plasma
waves (Espley et al. 2004, 2005; Ruhunusiri et al. 2015;
Harada et al. 2016b, 2019; Fowler et al. 2021; Teng et al.
2023) in the magnetotail of Mars.

Until recently, the nightside ionosphere of Mars was
a relatively unexplored region as opposed to the exten-
sively studied dayside ionosphere (e.g., Withers 2009).
In the absence of photoionizing solar radiation, the
primary sources of the Martian nightside ionosphere
can be either electron impact ionization or transport
from the dayside ionosphere (e.g., Fox et al. 1993).
Radar sounding by the Active Ionospheric Sounding
mode of the Mars Advanced Radar for Subsurface and
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Ionosphere Sounding (MARSIS) onboard Mars Express
(MEX) and radio occultation observations by the Mars
Express Radio Science Experiment indicate that the
Martian nightside ionosphere is patchy and sporadic,
exhibiting spatial inhomogeneity often associated with
the crustal magnetic field distribution and temporal
variability in response to the changing upstream solar
wind conditions and space weather events (Safaeinili
et al. 2007; Gurnett et al. 2008; Némec et al. 2010, 2011,
2014; Withers et al. 2012; Duru et al. 2011; Cartacci
et al. 2013; Diéval et al. 2014; Harada et al. 2018a; Qin
et al. 2021; Lester et al. 2022). In situ observations by
the Mars Atmosphere and Volatile Evolution (MAVEN)
mission provide a wealth of information on the night-
side ionosphere such as the ion composition, global
and local structures, seasonal and long-term variability,

MEX ASPERA-3 ELS + MEX MARSIS + EMM EMUS
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and species-by-species response to the suprathermal
electron precipitation (Fowler et al. 2015; Girazian
et al. 2017a, b, 2021; Adams et al. 2018; Cui et al. 2019;
Mayyasi et al. 2019; Qin et al. 2022; Xu et al. 2022b).
Despite the growing body of knowledge derived from
these observations, the relationship between the spa-
tiotemporal variability of the nightside ionosphere
and the magnetotail dynamics at Mars remains poorly
understood.

In this letter, we present a fortuitous conjunction of
topside radar sounding of the Martian nightside iono-
sphere by MEX MARSIS, suprathermal electron meas-
urements by the Analyzer of Space Plasma and Energetic
Atoms (ASPERA-3) Electron Spectrometer (ELS) (Bara-
bash et al. 2006) also onboard MEX, and far ultraviolet
(FUV) imaging of discrete aurora by EMM EMUS. The
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quasi-simultaneous observations of the peak electron
density, suprathermal electrons, and the auroral emis-
sion enable us to directly link the nightside ionospheric
structures and suprathermal electron precipitation to the
two-dimensional visualization of energy deposition from
the magnetotail to the upper atmosphere represented by
discrete aurora.

Observations

Figure 1 provides an overview of the EMM—-MEX con-
junction event of discrete aurora on 14 January 2022
(MEX Orbit 22790). MEX conducted active iono-
spheric sounding and suprathermal electron measure-
ments around the periapsis as it traveled northward on
the nightside, passing over moderately strong crustal
magnetic fields near the equator (Fig. le, f, and g). Fig-
ure 1b shows the MEX MARSIS observations during
20:05-20:45 UTC in the radargram format. We observe
the horizontal trace around the apparent altitude of 0 km
representing reflection from the surface of Mars along
with sporadic ionospheric echoes between 0-200 km.
These are typical signatures of MEX MARSIS sounding
of the nightside ionosphere (Némec et al. 2010, 2011;
Diéval et al. 2014). Figure 1a shows in situ measurements
of suprathermal electrons by MEX ASPERA-3 ELS in the
same time interval, indicating a distinct enhancement of
local suprathermal electron flux during 20:24—20:25 UTC
as discussed in detail later in this section. Meanwhile,
EMM EMUS obtained a raster-scanned image from
20:30:27 to 20:44:09 UTC as shown in Fig. 1g. Here we
derive the 130.4 nm brightness by integrating differential
radiance in a wavelength range of 129-132 nm and gener-
ate a geographic emission map of a 1° x 1° resolution by
averaging contributions from overlapping pixels in a sim-
ilar manner to Lillis et al. (2022). As we are interested in
auroral emission, we only show nightside pixels obtained
at > 100° solar zenith angles. In Fig. 1g, we observe a
clear discrete aurora signature around 0° latitudes and
50°E-90°E longitudes extending from the dusk termina-
tor. The auroral emissions are located around the mod-
erately strong crustal magnetic fields but appear to be
offset from the radial field region as sometimes seen for
“crustal field aurora” near the dusk terminator (Lillis et al.
2022). As shown by the MEX orbit track in Fig. 1g, MEX
traveled directly above the discrete aurora. A detailed
investigation of the acquisition times of individual pixels
indicates that the nearest pixel of the EMM EMUS image
to the sub-MEX position on the discrete aurora was
taken at 20:35:39 UTC as indicated by the white label in
Fig. 1d, only 11 min after MEX MARSIS conducted radar
and in situ measurements at the corresponding location
at 20:24:37 UTC as labeled in Fig. 1g. The close proxim-
ity in time of the MEX MARSIS ionospheric sounding,
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MEX ELS in situ measurements, and EMM EMUS auro-
ral imaging makes this event an excellent case for a direct
comparison between the auroral emission pattern, iono-
spheric properties, and suprathermal electrons.

Here we briefly examine the surrounding magnetic
field conditions of this discrete aurora. As shown in
Fig. 1g, the discrete aurora was observed on the dusk-
side and located northeast of the radially outward crustal
field region (red contours), suggesting a locally north-
ward and eastward crustal field direction (corresponding
to “Bth” < 0 and “Bph” > 0 in Fig. 1f). The magenta dots
in Fig. 1f indicate the local magnetic field strength at the
MEX position estimated from the electron cyclotron ech-
oes recorded in MARSIS ionograms (Gurnett et al. 2008;
Akalin et al. 2010). We observe that the local magnetic
field exceeds 30 nT around 20:24:37 UTC at the MEX alti-
tude of ~400 km above the discrete aurora. This is signifi-
cantly stronger than both the model crustal field strength
at 400 km altitude (black line in Fig. 1f) and the draped
field strength of ~10-20 nT observed at higher altitudes
before 20:15 UTC and after 20:36 UTC (magenta dots in
Fig. 1f). This implies an enhanced pileup of draped IMF,
compression and deformation of crustal fields, or combi-
nations thereof. The upstream solar wind was not directly
measured by MAVEN due to the orbit configuration, but
the IMF clock angle proxy in the dayside magnetosheath
(Dong et al. 2019) infers an IMF condition of generally
+By and mixed B, polarities for this event (not shown).
Because of the varying IMF clock angle proxy, we can-
not make a conclusive statement about the shear angle
between the draped IMF and underlying crustal fields
(Bowers et al. 2023b) and its implications for magnetic
reconnection potentially driving discrete aurora (John-
ston et al. 2023; Bowers et al. 2023a).

Figure 1c shows the MEX MARSIS observations in
the spectrogram format with a focus on the ionospheric
echoes. The enhanced echo intensities over a continuous
range of frequencies represent the ionospheric echoes
in this format, while the stripe-like patterns arise from
local plasma oscillations (e.g., Gurnett et al. 2008) and
are not of interest here. The white lines in Fig. 1¢ mark
the upper edge of the ionospheric echo signals, namely
the maximum frequency of the ionospheric echoes
(fp(max), extracted by examining individual ionograms.
Specifically, for a given ionogram, potential signals with
spectral densities exceeding 10~ (V/m)?/Hz are auto-
matically marked by our software. Then, we visually iden-
tify an ionospheric echo trace and record the maximum
frequency. Some representative ionograms are shown in
Fig. 2 with the identified fj(max) of the ionospheric echoes
indicated by the white labels. For comparison, east—west
cuts of the 130.4 nm emission map around the sub-MEX
orbit track are shown in Fig. 1d. Around 20:24:30 UTC,



Harada et al. Earth, Planets and Space (2024) 76:64

(a) Orb 22790, 2022-01-14/20:23:36.924, Alt: 418.1
0

- 10*12
South of Aurora
13
2] 10
- £ z
: "2 | iz
g < P Wl
8 4] g S E
o fs(mml\ -200 ] g 2
£ a a —
= 3 @
-400 107®
6
-600
1045
0 1 2 3 4 5
Frequency [MHz]
(c) Orb 22790, 2022-01-14/20:25:30.072, Alt: 380.9 »
110
North of Aurora
10"
2 o E Il &
> = &I
3 < 10"S =
o fsumm 200 g g E
) E S >
E 2 2=
= 13 a
-400
107
10-15

0 1 2 3
Frequency [MHz]

4 5

Page 5 of 11
(b) Orb 22790, 2022-01-14/20:24:37.269, Alt: 395.5 »
10
Auroral lonosphere
10"
7 o E 2
= s £
> =z <
< s foSE
o f:(m\m 200 g =3
o Sy g 53
£ 2 &=
= E3 ]
-400 108
107"
0 1 2 3 4 5
Frequency [MHz]
(d) Orb 22790, 2022-01-14/20:28:39.831, Alt: 368.5 »
0 10"
Non-Auroral Enhanced lonosphere
fp(max)
5] g 0] b bl | 1072
7 0o g 2
< = ¥
g < WO E
8 44 fsw’mm) 2005 . g g
) s © >
£ g &=
= k3 @
10"
64
107
0 1 2 3 4 5
Frequency [MHz]

Fig. 2 Representative ionograms obtained by MEX MARSIS. Echo intensity as a function of time delay and radio frequency obtained
when MEX was located at a south of the discrete aurora, b immediately above the discrete aurora, ¢ north of the discrete aurora, and d distant

from the discrete aurora

we observe a sharp enhancement of f,max) up to 1.5
MHz (Fig. 1c) and intense suprathermal electron fluxes
at energies below ~ 600 eV (Fig. 1la) remarkably coin-
ciding with the location of the discrete aurora emission
(Fig. 1d). A zoom-in comparison of the radar ionospheric
measurements, in situ suprathermal electrons, and FUV
auroral emission along the sub-MEX orbit track is shown
in Fig. 1h. Here the peak electron density, Ne(max), is con-
verted from fmax) using the relation of f, = 8980+/Ne,
where f, is the electron plasma frequency in Hz and N,
is the electron density in cm~3. We observe the enhanced
Ne(max) of 2.9 x 10* cm™3, which is quite high for the
nightside ionosphere of Mars (cf. Nemax) < 5 x 103
cm~3 for 90% of the time on the nightside as estimated
by Némec et al. (2010)). The red line in Fig. 1h shows the
integrated electron energy flux over 50—2000 eV, which
is used as an empirical measure to select auroral elec-
tron events (Xu et al. 2022a). The observed peak energy
flux reaches 3.1 x 10! eV/cm?/s/sr, far exceeding the
empirical threshold of 1.1 x 10'° eV/cm?/s/sr for auroral
emission detectable by MAVEN imaging ultraviolet spec-
trograph instrument (Xu et al. 2022a). In Fig. 1h, the local
enhancements of Nemax) (black), suprathermal electron
energy flux (red), and auroral emission (green) overlap
with each other for the most part and have similar widths
of ~ 3°-4° in latitude corresponding to ~180-250 km

in horizontal distance, yet we observe a small ~ 1° shift
between the peaks, which will be discussed later in this
section. The striking similarity between the enhance-
ments of Nemax) suprathermal electrons, and auro-
ral brightness provides compelling evidence that the
enhanced nightside ionosphere is caused by precipitating
suprathermal electrons that also give rise to the discrete
aurora.

We point out that the nightside ionosphere is also
enhanced in a region far from the discrete aurora. Spe-
cifically, MARSIS measured consistently high f;max)
of ~2 MHz from 20:28 to 20:31 UTC after the data gap
(Fig. 1c) while we observe suprathermal electron deple-
tions (Fig. 1la) and virtually no auroral emission at the
corresponding locations (Fig. 1d). Such suprathermal
electron depletions observed at altitudes above the elec-
tron exobase on the nightside suggest closed magnetic
field line topology with both footpoints on the nightside
(Mitchell et al. 2001; Brain et al. 2007; Steckiewicz et al.
2015). This non-auroral enhanced ionosphere is observed
~ 15°-25° north of the discrete aurora above a weak
crustal magnetic field region (Fig. 1f) with a wider spatial
extent compared to the local auroral enhancement. The
absence of auroral emission and suprathermal electrons
suggest that this ionospheric enhancement is not caused
by immediate electron impact ionization by precipitating
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electrons, and by elimination, we can infer that plasma
transport (e.g., low-altitude ion transport by collisional
coupling with neutral winds (Adams et al. 2018)) could be
implicated in forming the enhanced nightside ionosphere
observed by MARSIS above the weak crustal field region.
Alternatively, MEX ELS may have missed suprathermal
electron precipitation due to its limited field of view.

We now investigate detailed ionospheric echo proper-
ties in the ionograms shown in Fig. 2. Figure 2b shows
the ionogram obtained directly above the discrete aurora
(see the label “(2b)” in Fig. 1c). A notable feature of this
“auroral ionosphere” ionogram is that the maximum fre-
quency of the ionospheric echo, f,max) is significantly
higher than the minimum frequency of the surface echo,
Js(min) s opposed to ideal expectation for a horizontally
stratified ionosphere for which f,(max) is equal to fs(min).
These ionospheric and surface echoes with overlapping
frequencies can be explained by a vertically reflected sur-
face echo and an obliquely reflected ionospheric echo
from a slant iso-density surface of the ionosphere (Duru
et al. 2010). The vertical critical frequency, fymin) is
determined by the peak density at the nadir ionosphere,
and the oblique fj,(max) is determined by the peak density
of the slant reflection surface at the off-nadir ionosphere.
In other words, the overlapping ionospheric and surface
echoes are indicative of horizontal gradients of the peak
electron density. For the ionograms obtained at locations
adjacent to the discrete aurora (Figs. 2a and c), the over-
lapping feature is not as prominent as the auroral iono-
sphere. The overlapping ionospheric and surface echoes
are also observed for the non-auroral enhanced iono-
sphere (Fig. 2d).

Based on analysis of the ionogram obtained above the
discrete aurora (Fig. 2b) and on a geometric considera-
tion of the overlapping ionospheric and surface echoes as
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shown in Fig. 3, we can estimate the horizontal gradient
of the peak electron density of the auroral ionosphere.
The observed properties of the presumably oblique iono-
spheric echo indicate the maximum electron plasma fre-
quency of fymax) = 1.52 MHz and the apparent range to
the electron density peak of R" = 258 km. Here R’ repre-
sents the virtual distance to the target under the assump-
tion that the radio wave propagates at the speed of light,
and the actual range, R, is smaller than R’ because of the
dispersion of the radar pulse propagating through the
ionized medium with group velocities slower than the
speed of light. The observed minimum frequency of the
surface echo, fymin), indicates that the sub-MEX vertical
critical frequency is 1.02 MHz. Since the peak altitude
of the nightside ionosphere is typically ~ 150 km in the
presence of precipitating suprathermal electrons (Fill-
ingim et al. 2007; Lillis et al. 2009; Girazian et al. 2017a),
we assume an ionospheric peak altitude of 4jono ~ 150
km. We note that the peak altitude of Martian discrete
aurora is expected to be generally around ~ 135 km
(Schneider et al. 2021; Soret et al. 2016, 2021). With
these observations and assumptions, the off-nadir angle
of the oblique echo, 6, and the horizontal distance from
the sub-MEX point to the oblique echo reflection point
at the peak altitude, d, can be estimated as 6 <~ 18° and
d <~ 80 km (Fig. 3). This suggests that the overlapping
ionospheric and surface echoes result from the peak elec-
tron density varying from 1.3 x 10* cm™3 to 2.9 x 10*
cm 3 within a horizontal distance of <~ 80 km. This dis-
tance is comparable to, or even smaller than, the effective
spatial resolution of the EMM EMUS image (the near-
est EMUS pixel to the sub-MEX position at the MAR-
SIS auroral ionospheric measurement has 4.9° longitude
x 0.91° latitude widths, approximately corresponding to
300 km x 55 km at 150 km altitude), implying that there

Mars Express

| p—|

hsc = 396 km

Rvertical = hsc - hiono ~ 246 km

hiono ~ 150 km

0 = arccos(Rvertica/R) <~ 18°

R<R'=258 km
fo = 1.02 MHz (Ne = 1.3x104 cm-9)

fo = 1.52 MHz (Ne = 2.9x104 cm-3)

d <~ 80 km

Surface
Fig. 3 Schematic illustration of a geometric consideration of the overlapping ionospheric and surface echoes. See text for details
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Fig. 4 Images of 130.4 nm emission of the same region taken by EMM EMUS. The images were taken atal~11 min, b1 ~26 min,and c1 ~2.6 h
after the MEX MARSIS observation of the peak electron density enhancement. For reference, the times at which individual pixels were measured are

indicated in panels (a2, b2, c2)

could be spatial inhomogeneity of aurora unresolved by
EMM EMUS for this event.

Another point to note is that the ionospheric echoes
recorded in Fig. 2a—d have relatively broad widths in
time delay even though the transmitted pulse has a very
short duration corresponding to the width of one time-
delay bin. These signatures are referred to as “diffuse
echoes” in the literature and are interpreted as a superpo-
sition of multiple echoes reflected at oblique angles from
ionospheric irregularities (Gurnett et al. 2008; Harada
et al. 2018b). Diffuse echoes are commonly observed
for the nightside ionosphere (Harada et al. 2018b) as
expected for generally large fluctuations of electron and

ion densities in the nightside ionosphere (Girazian et al.
2017b; Park 2024).

Finally, we examine the time evolution of the discrete
aurora by comparing the EMM EMUS images obtained
at different times (Fig. 4). Figure 4al shows a close-up
of the EMM EMUS image shown in Fig. 1g, and 4bl
and 4cl shows subsequent images of the same region
obtained by EMM EMUS available for this event. Fig-
ure 4a2, b2, and ¢2 demonstrates how the pixel acqui-
sition times vary over the maps. The nearest pixels to
the sub-MEX position at the MARSIS auroral iono-
spheric measurement were taken at 20:51:28 UTC for
Fig. 4b1 and at 23:03:18 UTC for Fig. 4c1l. We can see
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that the discrete auroral pattern slightly varies its shape
over ~15 min from Fig. 4al to Fig. 4b1. Such small yet
visible variations on ~10 min time scales may explain
the aforementioned small shift between the Nemax)
and auroral emission enhancements (the black and
green lines in Fig. 1h), which were observed 11 min
apart. Also, the in situ measurements of suprathermal
electrons at the MEX altitude do not necessarily map
exactly to the nadir auroral emission depending on the
magnetic field configuration (Qin et al. 2021), which
could explain the shift between the enhancements of
the suprathermal electrons and auroral emission (the
red and green lines in Fig. 1h). In Fig. 4c1 (~2 h later),
the overall auroral emission intensity is greatly weak-
ened and the once-coherent structure of clear discrete
aurora has fragmented into small patches of very weak
emission, suggesting that this discrete aurora pattern
had almost disappeared by this time. The dynamics of
the Martian discrete aurora could be attributed to tem-
porally varying magnetic field and plasma conditions
in the magnetotail resulting from the dynamic solar
wind—Mars interaction.

Conclusions and implications

We analyze the quasi-simultaneous FUV, radar, and
in situ electron observations relevant to discrete aurora
at Mars. In this event, the FUV image of a clear discrete
aurora on the duskside of Mars was obtained by EMM
EMUS just 11 min after MEX MARSIS conducted top-
side radar sounding of the nightside ionosphere and
MEX ELS measured the enhancement of suprathermal
electrons. We observe a local and distinct enhancement
of the ionospheric peak electron density (up to 2.9 x 10*
cm™3) and in situ electron energy flux (up to 3.1 x 10!}
eV/cm?/s/sr in the 50-2000 eV energy range) spatially
coinciding well with the discrete auroral emission, dem-
onstrating that the locally enhanced nightside ionosphere
and discrete aurora at Mars are caused by a common
agent: precipitating suprathermal electrons. The sub-
sequent auroral images of the same region indicate that
the discrete aurora was dynamic, exhibiting time-varying
patterns and intensities. The auroral emission slightly
changed its shape over 15 min and its overall intensity
mostly diminished in a few hours. Based on the proper-
ties of the overlapping ionospheric and surface echoes
measured by MEX MARSIS, we can infer that the peak
electron densities vary by a factor of 2 or more within
a horizontal distance of <~ 80 km. The observed inho-
mogeneity of the auroral ionosphere suggests that the
auroral electron precipitation could be highly structured
with horizontal spatial scales on the order of several tens
of km. Meanwhile, a broader region of enhanced elec-
tron densities was observed with suprathermal electron
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depletions and without any prominent auroral emission
around 15°-25° north of the discrete aurora, implying a
non-auroral source of the nightside ionosphere in this
region (e.g., plasma transport from the dayside iono-
sphere via collisional neutral-ion coupling at low alti-
tudes (Adams et al. 2018)). To examine the nightside
ionospheric sources, in situ ion composition measure-
ments will be highly informative (Girazian et al. 2017b),
and further investigations should be conducted to reveal
the sources and behaviors of the non-auroral nightside
ionosphere of Mars. Both the auroral and non-auroral
ionospheres display diffuse echoes indicative of iono-
spheric irregularities. These observations highlight the
complexity of sources, transport, and dynamics of the
Martian nightside ionosphere and suggest that a suc-
cessful model of the nightside ionosphere would need to
include both electron impact ionization and day-to-night
plasma transport, the former of which can vary on short
time and small spatial scales resulting from the highly
dynamic magnetotail of Mars.

Abbreviations
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MEX Mars Express
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