STATISTICAL MAPPING OF MAGNETIC TOPOLOGY AT VENUS

Shaosui Xu¹ (shaosui.xu@ssl.berkeley.edu)

Coauthors: Rudy A. Frahm², Yingjuan Ma³, Janet G. Luhmann¹, David

L. Mitchell¹, Moa Persson⁴

¹Space Sciences Laboratory, University of California, Berkeley, CA, USA
²Southwest Research Institute, San Antonio, TX, USA
³Department of Earth Planetary and Space Sciences, University of California, Los Angeles, CA, USA
⁴IRAP, CNRS-UPS-CNES, France

INTRODUCTION

Solar wind interaction with Venus and Mars

Venus

- Mars with crustal fields
 - Dynamic B topology
 - Closed/open/draped
 - Venus, insignificant crustal fields
 - When IMF dips into the ionosphere, different topologies can be defined
 - Conduit for energy and particle exchange between the ionosphere and solar wind

Xu et al. [JGR, 2020]

MOTIVATION

- Magnetic topology:
 - Provides important information regarding the magnetization of Venus's ionosphere
 - A power full tool to characterize cold planetary ion outflow/inflow at Venus
 - A conduit for planetary ions in the ionosphere to be energized and escape
 - Important for characterizing energetic electron precipitation, a source for ionization, thermal plasma heating, and auroral emission

METHODOLOGY

METHODOLOGY: TOPOLOGY (6 TYPES) & SUPERTHERMAL ELECTRONS (STE)

METHODOLOGY

- Defining mag topology, i.e., magnetic connectivity to collisional atmosphere/ionosphere (e- exobase)
 - One end: open
 - Two ends: closed
 - None: draped
- Determining magnetic topology:
 - Electron pitch angle distribution (PAD):
 - One-sided loss cone: intersecting atmosphere on one end, open
 - Double-sided loss cone: intersection on both ends, closed
 - Electron energy spectra for field-aligned directions:
 - Photoelectrons in one direction, solar wind electrons in another, open
 - <u>Photoelectrons</u> in both directions, closed
 - Solar wind electrons in both directions with no loss cone, draped

RESULTS - OPEN

RESULTS – CLOSED+DRAPED

CLOSED/ALL

- All CLOSED combined
 - 10%-35% CLOSED, mostly near the terminator
 - Unexpected topology, formation mechanism unknown

- DRAPED
 - Complementary to other types, dominant topology except for in the ionosphere

DRAPED/ALL

RESULTS – VSE ASYMMETRY

- All CLOSED (left) + Open-to-day (right): higher occ. rate past terminator at Z_E < 0
 - More magnetic connectivity to dayside ionosphere in –E than +E
 - More ionospheric magnetization in –E than +E?

RESULTS – SOLAR CYCLE EFFECTS

- More CLOSED/OPEN near terminator during solar **MAX** (right column)
 - More dayside magnetic connectivity during solar maximum
- Solar Min: 2007-2011
- Solar Max: 2011-2014

RESULTS – SOLAR CYCLE EFFECTS

- More OPEN (maybe closed too?) in the tail during solar **MIN** (right column)
 - More nightside magnetic connectivity during solar minimum
- Solar Min: 2007-2011
- Solar Max: 2011-2014

CONCLUSIONS

- First case studies of magnetic topology at Venus done by Xu et al. [GRL, 2021]
- This study *first statistical mapping* of Venus magnetic topology
 - CLOSED: a surprising topology, distributed near the terminator with a 10%-35% occ rate
 - OPEN: distributed low altitudes and tail with a ~40% occ rate
 - DRAPED: dominant topology
- Driver effects
 - **VSE:** More dayside magnetic connectivity in –E than +E
 - Solar cycle:
 - More dayside magnetic connectivity during solar max
 - More nightside magnetic connectivity during solar min

